
1 15-214

School of
Computer Science

Principles of Software Construction:
Concurrency, Part 2

Josh Bloch Charlie Garrod

2 15-214

Administrivia

• Homework 5a due now

• Homework 5 framework goals:

– Functionally correct

– Well documented and easy to understand

– Interesting

• 2nd midterm exam returned today, after class

3 15-214

Key concepts from Tuesday…

• Runnable interface represents work to be done

• To create a thread: new Thread(Runnable)

• To start thread: thread.start();

• To wait for thread to finish: thread.join();

• One sychronized static method runs at a time

• volatile – communication sans mutual exclusion

• Must synchronize access to shared mutable state

– Else program will suffer safety and liveness failures

4 15-214

Outline

I. Discrete Event Simulation exam question

II. Wait/Notify - primitives for cooperation

III. The dangers of over-synchronization

5 15-214

DES specification summary

• Simulator steps through executing events

– Time usually represented as an integer

• Events can do these things:

– Change the simulated system state

– Create and schedule new events to occur in future

– Cancel a future event, given a reference to event

– Stop the simulation

• Framework is sequential – no concurrency

– Events scheduled for same time can run in any order

6 15-214

Minimal API for event and simulator

7 15-214

Event implementation

8 15-214

Simulator implementation (1)

9 15-214

Simulator implementation (2)

10 15-214

Zombie invasion spec summary

• Initial population: humans = 106, zombies = 4

• On first day, each zombie goes hunting

• When a zombie hunts, one of these things happen
– p = .2, zombie infects human: zombies++, humans--

– p = .2, zombie is destroyed: zombies--

– p = .6, nothing happens (populations unchanged)

• If zombie survives, sleeps 1-10 days & hunts again

• Newly-infected zombie hunts day after infected

• Run till humans gone, zombies gone, or 100 years

11 15-214

Zombie invasion (1)

12 15-214

Zombie invasion (2)

13 15-214

Key design decisions

• No class to represent state explicitly

– State is merely the variables shared by events

– Eliminates need for generics

– Occam’s Razor / “When in doubt, leave it out”

• Events have a Runnable, not a run method

– Enables use of anonymous class or lambda

– “Favor composition over inheritance” [EJ Item 16]

• Pending events represented as PriorityQueue

– Nice code and good performance

14 15-214

Outline

I. Discrete Event Simulation exam question

II. Wait/Notify - primitives for cooperation

III. The dangers of over-synchronization

15 15-214

The basic idea is simple…

• State (fields) protected by lock (synchronized)

• Sometimes, thread can’t proceed till state is right

– So it waits with wait

– Automatically drops lock while waiting

• Thread that makes state right wakes waiting
thread(s) with notify

– Waking thread must hold lock when it calls notify

– Waiting thread automatically gets lock when woken

16 15-214

But the devil is in the details
Never invoke wait outside a loop!
• Loop tests condition before and after waiting

• Test before skips wait if condition already holds

– Necessary to ensure liveness

– Without it, thread can wait forever!

• Testing after waiting ensure safety

– Condition may not be true when thread wakens

– If thread proceeds with action, it can destroy invariants!

17 15-214

All of your waits should look like this

synchronized (obj) {
 while (<condition does not hold>) {
 obj.wait();
 }

 ... // Perform action appropriate to condition
}

18 15-214

Why can a thread wake from a wait
when condition does not hold?
• Another thread can slip in between notify & wake

• Another thread can invoke notify accidentally
or maliciously when condition does not hold

– This is a flaw in java locking design!

– Can work around flaw by using private lock object

• Notifier can be liberal in waking threads

– Using notifyAll is good practice, but causes this

• Waiting thread can wake up without a notify(!)

– Known as a spurious wakeup

19 15-214

Example: read-write locks (API)
Also known as shared/exclusive mode locks
private final RwLock lock = new RwLock();

lock.readLock();
try {
 // Do stuff that requires read (shared) lock
} finally {
 lock.unlock();
}

lock.writeLock();
try {
 // Do stuff that requires write (exclusive) lock
} finally {
 lock.unlock();
}

20 15-214

Example: read-write locks (Impl. 1)

public class RwLock {
 // State fields are protected by RwLock's intrinsic lock

 /** Num threads holding lock for read. */
 private int numReaders;

 /** Whether lock is held for write. */
 private boolean writeLocked;

 public synchronized void readLock() throws InterruptedException {
 while (writeLocked) {
 wait();
 }
 numReaders++;
 }

21 15-214

Example: read-write locks (Impl. 2)

 public synchronized void writeLock() throws InterruptedException {
 while (numReaders != 0 || writeLocked) {
 wait();
 }
 writeLocked = true;
 }

 public synchronized void unlock() {
 if (numReaders > 0) {
 numReaders--;
 } else if (writeLocked) {
 writeLocked = false;
 } else {
 throw new IllegalStateException("Lock not held");
 }
 notifyAll(); // Wake any waiters
 }
}

22 15-214

Caveat: RwLock is just a toy!

• It has poor fairness properties

– Readers can starve writers!

• java.util.concurrent provides an
industrial strength ReadWriteLock

• More generally, avoid wait/notify

– In the early days it was all you had

– Nowadays, higher level concurrency utils are better

23 15-214

Outline

I. Discrete Event Simulation exam question

II. Wait/Notify - primitives for cooperation

III. The dangers of over-synchronization

24 15-214

Broken Work Queue (1)

public class WorkQueue {
 private final Queue<Runnable> queue = new ArrayDeque<>();
 private boolean stopped = false;
 public WorkQueue() {
 new Thread(() -> {
 while (true) { // Main loop
 synchronized (queue) { // Locking on private obj.
 try {
 while (queue.isEmpty() && !stopped)
 queue.wait();
 } catch (InterruptedException e) {
 return;
 }
 if (stopped) return; // Causes thread to end
 queue.remove().run(); // BROKEN - LOCK HELD!
 }
 }
 }).start();
 }

25 15-214

Broken Work Queue (2)

Broken Work Queue (2)
 public final void enqueue(Runnable workItem) {
 synchronized (queue) {
 queue.add(workItem);
 queue.notify();
 }
 }
 public final void stop() {
 synchronized (queue) {
 stopped = true;
 queue.notify();
 }
 }
}

26 15-214

Perverse use of that shows flaw

public static void main(String[] args) {
 WorkQueue wq = new WorkQueue();

 // Enqueue task that starts thread that enqueues task...
 wq.enqueue(() -> {
 Thread t = new Thread(() -> {
 wq.enqueue(() -> { System.out.println("Hi Mom!"); });
 });

 // ...and waits for thread to finish
 t.start();
 try {
 t.join();
 } catch (InterruptedException e) {
 throw new AssertionError(e);
 }
 });
}

27 15-214

Luckily, it’s easy to fix the deadlock

public WorkQueue() {
 new Thread(() -> {
 while (true) { // Main loop
 Runnable task = null;
 synchronized (queue) {
 try {
 while (queue.isEmpty() && !stopped)
 queue.wait();
 } catch (InterruptedException e) {
 return;
 }
 if (stopped) return; // Causes thread to terminate
 task = queue.remove();
 }
 task.run(); // Fixed! "Open call" (no lock held)
 }
 }).start();
}

28 15-214

Never do callbacks while holding lock

• It is over-synchronization

• We saw it deadlock

• And it can do worse!

– If the callback goes back into the module holding the
lock, it will not block, and can damage invariants!

• So always drop any locks before callbacks

– You may have to copy the callbacks under lock

29 15-214

Summary

• Discrete Event/Zombie problem was long & hard

– But sol’n could be short & sweet with good design choices

• Never use wait outside of a while loop!

– Think twice before using it at all

• Neither an under- nor an over-synchronizer be

– Under-synchronization causes safety (& liveness) failures

– Over-synchronization causes liveness (& safety) failures

