Principles of Software Construction:
Concurrency, Part 2

Josh Bloch Charlie Garrod

L
institute for
I S SOFTWARE
RESEARCH

.
institute for
15-214 I | S [t



Administrivia

 Homework 5a due now

* Homework 5 framework goals:
— Functionally correct

— Well documented and easy to understand
— Interesting

* 2nd midterm exam returned today, after class

- institute for
15-214 I | S [ R



Key concepts from Tuesday...

 Runnable interface represents work to be done
* To create a thread: new Thread(Runnable)
* To start thread: thread.start();

* To wait for thread to finish: thread. join();

* One sychronized static method runs at a time
e volatile - communication sans mutual exclusion
* Must synchronize access to shared mutable state

— Else program will suffer safety and liveness failures

.
institute for
15-214 < | S [ Fuas:



Outline

Discrete Event Simulation exam question
. Wait/Notify - primitives for cooperation

Il. The dangers of over-synchronization

-
institute tor
15-214 a  [SIN s



DES specification summary

* Simulator steps through executing events

— Time usually represented as an integer

* Events can do these things:
— Change the simulated system state
— Create and schedule new events to occur in future
— Cancel a future event, given a reference to event
— Stop the simulation

* Framework is sequential — no concurrency
— Events scheduled for same time can run in any order

institut
15-214 I | S [ B



Minimal API for event and simulator

== institute for
15-214 6 LSIN ;o



Event implementation

15-214




Simulator implementation (1)

15-214



Simulator implementation (2)

15-214



Zombie invasion spec summary

* |nitial population: humans = 10°, zombies = 4
* On first day, each zombie goes hunting

* When a zombie hunts, one of these things happen
— p = .2, zombie infects human: zombies++, humans--
— p =.2, zombie is destroyed: zombies--
— p = .6, nothing happens (populations unchanged)

* |f zombie survives, sleeps 1-10 days & hunts again
* Newly-infected zombie hunts day after infected

* Run till humans gone, zombies gone, or 100 years

- institute tor
15-214 10 [SIN s



Zombie invasion (1)

15-214



Zombie invasion (2)

' . institute for
15-214 12 [SYR sormae



Key design decisions

* No class to represent state explicitly
— State is merely the variables shared by events
— Eliminates need for generics

— Occam’s Razor / “When in doubt, leave it out”
* Events have a Runnable, not a run method
— Enables use of anonymous class or lambda

— “Favor composition over inheritance” [EJ [tem 16]

* Pending events represented as PriorityQueue

— Nice code and good performance

- institute tor
15-214 13 [SIN s



Outline

Discrete Event Simulation exam question
. Wait/Notify - primitives for cooperation

Il. The dangers of over-synchronization

- institute tor
15-214 14 BN o



The basic idea is simple...

* State (fields) protected by lock (synchronized)

* Sometimes, thread can’t proceed till state is right
— So it waits with wailt

— Automatically drops lock while waiting

* Thread that makes state right wakes waiting
thread(s) with notify

— Waking thread must hold lock when it calls notify
— Waiting thread automatically gets lock when woken

= nstitute fol
15-214 |S TR



But the devil is in the details
Never invoke wait outside a loop!

* Loop tests condition before and after waiting

e Test before skips wait if condition already holds
— Necessary to ensure liveness
— Without it, thread can wait forever!

e Testing after waiting ensure safety
— Condition may not be true when thread wakens
— If thread proceeds with action, it can destroy invariants!

- institute for
15-214 16 [SIN s



All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {
obj.wait();
}

. // Perform action appropriate to condition

15-214 17 [ v



Why can a thread wake from a wait
when condition does not hold?

* Another thread can slip in between notify & wake

* Another thread can invoke notify accidentally
or maliciously when condition does not hold

— This is a flaw in java locking design!

— Can work around flaw by using private lock object
* Notifier can be liberal in waking threads

— Using notifyAll is good practice, but causes this
* Waiting thread can wake up without a notifty(!)

— Known as a spurious wakeup
15-214 s [FI] B



Example: read-write locks (API)
Also known as shared/exclusive mode locks

private final RwLock lock = new RwLock();

lock.readLock();

try {
// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();

try {
// Do stuff that requires write (exclusive) lock

} finally {
lock.unlock();
}

= institute for
15-214 19 BN s



Example: read-write locks (Impl. 1)

public class RwLock {

15-214

// State fields are protected by RwLock's intrinsic lock

/** Num threads holding lock for read. */
private int numReaders;

/** Whether lock is held for write. */
private boolean writelLocked;

public synchronized void readLock() throws InterruptedException {
while (writelLocked) {
wait();
}

numReaders++;

te |

-
institute tor
SOFTWARE

20 RESEARCH



Example: read-write locks (Impl. 2)

public synchronized void writelLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {
wait();
}

writelLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {
numReaders--;
} else if (writelocked) {
writeLocked = false;
} else {
throw new IllegalStateException("Lock not held");
}

notifyAll(); // Wake any waiters

te for

= institute
15-214 21 SOt



Caveat: RwLock is just a toy!

* |t has poor fairness properties

— Readers can starve writers!

* java.util.concurrent provides an
industrial strength ReadWritelock

* More generally, avoid wait/notify
— In the early days it was all you had
— Nowadays, higher level concurrency utils are better

= institute for
15-214 Y | S [ Hays



Outline

Discrete Event Simulation exam question
. Wait/Notify - primitives for cooperation

Il. The dangers of over-synchronization

- institute tor
15-214 23 [N e



Broken Work Queue (1)

public class WorkQueue {
private final Queue<Runnable> queue = new ArrayDeque<>();

private boolean stopped = false;
public WorkQueue() {
new Thread(() -> {

while (true) { // Main loop
synchronized (queue) { // Locking on private obj.

try {
while (queue.isEmpty() && !stopped)

queue.wait();
} catch (InterruptedException e) {
return;
}

if (stopped) return; // Causes thread to end
queue.remove().run(); // BROKEN - LOCK HELD!

}
}
}).start();

= institute for
15-214 24



Broken Work Queue (2)

Broken Work Queue (2)
public final void enqueue(Runnable workItem) {
synchronized (queue) {
queue.add(workItem);
queue.notify();
}
}
public final void stop() {
synchronized (queue) {
stopped = true;
queue.notify();

ite for

= institL C
15-214 25 sorTinse



Perverse use of that shows flaw

public static void main(String[] args) {
WorkQueue wg = new WorkQueue();

// Enqueue task that starts thread that enqueues task...
wqg.enqueue(() -> {
Thread t = new Thread(() -> {
wq.enqueue(() -> { System.out.println("Hi Mom!"); });
1

// ...and waits for thread to finish
t.start();

try {
t.join();

} catch (InterruptedException e) {
throw new AssertionError(e);

}

})s

= institute for
15-214 26



Luckily, it’s easy to fix the deadlock

public WorkQueue() {
new Thread(() -> {
while (true) { // Main loop
Runnable task = null;
synchronized (queue) {

try {
while (queue.isEmpty() && !stopped)

queue.wait();
} catch (InterruptedException e) {
return;
}

if (stopped) return; // Causes thread to terminate
task = queue.remove();

}
task.run(); // Fixed! "Open call” (no lock held)

}
}).start();

institute for

15-214 27 SN o



Never do callbacks while holding lock

* |t is over-synchronization
 We saw it deadlock

e And it can do worse!

— If the callback goes back into the module holding the
lock, it will not block, and can damage invariants!

* So always drop any locks before callbacks
— You may have to copy the callbacks under lock

institute tor
SSSSSSSS

15-214 28 [N o ;



Summary

* Discrete Event/Zombie problem was long & hard

— But sol’'n could be short & sweet with good design choices

* Never use wait outside of a while loop!

— Think twice before using it at all

* Neither an under- nor an over-synchronizer be
— Under-synchronization causes safety (& liveness) failures
— Over-synchronization causes liveness (& safety) failures

- institute tor
15-214 20 [SI0 s



